

Pergamon Tetrahedron: *Asymmetry* 10 (1999) 3659–3662

Efficient synthesis of chiral non-racemic 6-(furan-3-yl)- 5,6-dihydro-pyran-2-ones

Margherita De Rosa, Rosanna Dell'Aglio, Annunziata Soriente and Arrigo Scettri [∗] *Dipartimento di Chimica, Università di Salerno, 84081 Baronissi (SA), Italy*

Received 23 July 1999; accepted 7 September 1999

Abstract

The title compounds are accessible in high yields and enantioselectivities by a five-step sequence involving in the key-step asymmetric aldol condensations of masked acetoacetic esters to 3-formyl furan. © 1999 Elsevier Science Ltd. All rights reserved.

The noteworthy synthetic utility of 6-(furan-3-yl)-pyran-2-one derivatives of type **1** has been recently^{1–3} confirmed by their employment as key-intermediates in the preparation of pyranofuranones **2** both in racemic and enantiomerically enriched form. Investigations on the structure–activity relationship^{2,4} have shown that the pyranofuranone moieties of **2a,b** represent the pharmacophoric groups, respectively, of manoalide⁵ and cacospongionolide $B₀$ ⁶ two naturally occurring marine compounds, characterized by powerful antiinflammatory properties (Fig. 1).

The logical consequence of these findings was a strong demand of a rapid, highly efficient and stereoselective approach to products of type **2**. We now report that key-intermediates **1** are accessible in very good yield and high enantiomeric excess through a simple five-step sequence starting from the easily available 3-formyl furan **3** and masked acetoacetic esters **4** (Scheme 1).

The crucial point of our strategy was represented by the generation of the stereogenic center in the first step by an enantioselective aldol condensation and, therefore, a preliminary investigation was planned. We have found that a careful choice of the experimental conditions allows a noticeable improvement of Sato's procedure,⁷ involving Ti(IV)-catalyzed addition of silyloxydienes of type **4** to aldehyde **3** in the presence of (R) - $(+)$ -binaphthol, as a chiral auxiliary (Table 1).

As clearly pointed out, the best results have been obtained by using equivalent amounts of starting material **3** and Ti(IV)–Binol complex (entries **c**, **d** and **g**), although very satisfactory yields and e.e.s can be observed in the presence of only 0.5 equivalents of the catalytic system (entry **f**). The introduction of a methyl group in 5 position of silyloxydiene **4** resulted in a noticeable lowering of the yields; however, **5c** could be obtained in good enantiomeric excess (entry **j**).

[∗] Corresponding author. Tel: (+39)-089965374; fax: (+39)-089965296; e-mail: scettri@ponza.dia.unisa.it

Scheme 1.

Treatment of enantiomerically enriched **5a** (91% e.e.) and **5c** (90% e.e.) with methanolic potassium carbonate afforded β-ketolactones **6a** and **6c** in nearly quantitative yields and, then, the reduction of the ketone functionality with an NH₃BH₃ complex led to β-hydroxylactones **7a**,**c** in >90% yields (¹H NMR analysis). As regards the stereochemical outcome of the reduction, **7c** was obviously obtained as a very complex mixture of diastereoisomers, while 1H NMR analysis of crude **7a** indicated the formation of a 3:1 *syn*:*anti* mixture. The diastereoisomeric ratio was determined through the careful integration of the

Entry	\mathbf{R}^1	\mathbb{R}^2	R	Ti(IV)/Chir.aux.	Yield ^{a)}	e.e.b)
					$(\%)$	$(\%)$
a	Me	Me	H	$0.17/0.17$ eq.	42	80
b	Me	Me	H	$0.50/0.50$ eq.	65	89
$\mathbf c$	Me	Me	H	$1.00/1.00$ eq.	81	91
d	Me	Me	H	$1.00/1.00$ eq.	76	91 ^c
e	$-CH_2$ ₂	$-CH_2$ ₂ -	н	$0.17/0.17$ eq.	59	87
f	$-CH_2$ ₂ -	$-CH_2$ ₂ -	Н	$0.50/0.50$ eq.	89	94
g	$-CH_2$ ₂ -	$-CH_2$ ₂ -	H	$1.00/1.00$ eq.	92	>95
h	Me	Me	Me	$0.17/0.17$ eq.	40	67
i	Me	Me	Me	$0.50/0.50$ eq.	41	72
J	Me	Me	Me	$1.00/1.00$ eq.	50	88

Table 1 Enantioselective aldol condensation of silyloxydienes **4** to aldehyde **3**

^{a)}All the yields refer to isolated chromatographically pure compounds and are calculated on starting material 3

 b) E.es have been determined by ¹H-NMR analysis (400MHz) on the corresponding MTPA esters.

Absolute configurations have been assigned through the modified Mosher procedure⁸.

^{c)} In this entry (S)-(-)-binaphthol was used as chiral auxiliary and (S)-aldol was obtained.

signals relative to the 6-H proton (*syn*: 5.50 δ, dd, J=11.9 Hz, 2.9 Hz; *anti*: 5.73 δ, dd, J=10.9 Hz, 3.2 Hz).

In every case, both hydroxylactones **7a**,**c**, without any purification, were directly converted into α,βunsaturated lactones $8a$,**c** in >85% yield by an already known procedure¹ involving first treatment with Ac2O/Py (leading to the corresponding β-acetoxylactones) and then base-catalyzed AcOH elimination. Enantiomeric excesses of $8a^{\dagger}$ (87%) and $8c$ (92%) were determined by ¹H NMR analysis in the presence of Eu(hfc)₃, as shift reagent, by careful integration of the signals relative to the proton in 4 position of the furan nucleus.

Obviously, the employment of *S*-(−)-binaphthol, as a chiral auxiliary, in the first step of the sequence (entry **d**, Table 1) has allowed the final product, *S*-**8a**, to be obtained with comparable yield and enantiomeric excess.

Acknowledgements

We are grateful to Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) for financial support.

References

- 1. Soriente, A.; De Rosa, M.; Scettri, A.; Sodano, G. *Tetrahedron Lett*. **1996**, *37*, 8007.
- 2. De Rosa, M.; Giordano, S.; Scettri, A.; Sodano, G.; Soriente, A.; Pastor, P. G.; Alcaraz, M. J.; Payá, M. *J. Med. Chem*. **1998**, *41*, 3232.

[†] The $\lceil \alpha \rceil_D$ value reported in Scheme 1 for compound **8a** represents a correction of the value previously reported³ for the same compound.

- 3. Soriente, A.; De Rosa, M.; Dovinola, P.; Sodano, G.; Scettri, A. *Tetrahedron: Asymmetry* **1998**, *9*, 2197.
- 4. Potts, B. C. M.; Faulkner, D. J.; de Carvalho, M. S.; Jacobs, R. S. *J. Am. Chem. Soc.* **1992**, *114*, 5093.
- 5. de Silva, E. D.; Scheuer, P. J. *Tetrahedron Lett*. **1980**, *21*, 1611.
- 6. De Rosa, S.; Crispino, A.; De Giulio, A.; Iodice, C.; Pronzato, R.; Zavodnik, N. *J. Nat. Prod*. **1995**, *58*, 1776.
- 7. Sato, M.; Sunami, S.; Sugita, Y.; Kaneko, C. *Heterocycles* **1995**, *41*, 1435.
- 8. (a) Mosher, H. S.; Dale, J. A. *J. Am. Chem. Soc*. **1973**, *95*, 512. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. *J. Am. Chem. Soc*. **1991**, *113*, 4092.